next up previous
Next: Convergence of Runge--Kutta Up: The Dynamics of Runge--Kutta Previous: Acknowledgements


Aiken, R. C., editor [1985] Stiff Computation (Oxford University Press).

Aronson et al. 1983
Aronson, D. G., Chory, M. A., Hall, G. R. & McGehee, R. P. [1983] ``Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study,'' Commun. Math. Phys. 83, 303.

Arrowsmith et al. 1993
Arrowsmith, D. K., Cartwright, J. H. E., Lansbury, A. N. & Place, C. M. [1993] ``The Bogdanov map: Bifurcations, mode locking, and chaos in a dissipative system,'' Int. J. Bifurcation and Chaos 3, 803--42.

Auerbach & Friedmann1991
Auerbach, S. P. & Friedmann, A. [1991] ``Long-term behaviour of numerically computed orbits: Small and intermediate timestep analysis of one-dimensional systems,'' J. Comput. Phys. 93, 189.

Beyn, W.-J. [1987a] ``On invariant closed curves for one-step methods,'' Numer. Math. 51, 103.

Beyn, W.-J. [1987b] ``On the numerical approximation of phase portraits near stationary points,'' SIAM J. Num. Anal. 24, 1095.

Butcher, J. C. [1987] The Numerical Analysis of Ordinary Differential Equations: Runge--Kutta and General Linear Methods (Wiley).

Candy & Rozmus1991
Candy, J. & Rozmus, W. [1991] ``A symplectic integration algorithm for separable Hamiltonian systems,'' J. Comput. Phys. 92, 230.

Channell & Scovel1990
Channell, P. J. & Scovel, C. [1990] ``Symplectic integration of Hamiltonian systems,'' Nonlinearity 3, 231.

Chua & Lin1975
Chua, L. O. & Lin, P. M. [1975] Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques (Prentice-Hall).

Devaney, R. L. [1989] An Introduction to Chaotic Dynamical Systems (Addison--Wesley) second edition.

Earn & Tremaine1992
Earn, D. J. D. & Tremaine, S. [1992] ``Exact numerical studies of Hamiltonian Maps: Iterating without roundoff error,'' Physica D 56, 1.

Feng, K. [1986] ``Difference schemes for Hamiltonian formalism and symplectic geometry,'' J. Comput. Math. 4, 279.

Feng & Qin1991
Feng, K. & Qin, M.--z. [1991] ``Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study,'' Comput. Phys. Commun. 65, 173.

Forest & Ruth1990
Forest, E. & Ruth, R. D. [1990] ``Fourth order symplectic integration,'' Physica D 43, 105.

Gardini et al. 1987
Gardini, L., Lupini, R., Mammana, C. & Messia, M. G. [1987] ``Bifurcations and transition to chaos in the three-dimensional Lotka--Volterra map,'' SIAM J. Appl. Math. 47, 455.

Gear, C. W. [1971] Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall).

Hall & Watt1976
Hall, G. & Watt, J. M. [1976] Modern Numerical Methods for Ordinary Differential Equations (Oxford University Press).

Hammel et al. 1988
Hammel, S. M., Yorke, J. A. & Gregobi, C. [1988] ``Numerical orbits of chaotic processes represent true orbits,'' Bull. Am. Math. Soc. 19, 465.

Henrici, P. [1962] Discrete Variable Methods in Ordinary Differential Equations (Wiley).

Iserles, A. [1990] ``Stability and dynamics of numerical methods for nonlinear ordinary differential equations,'' IMA J. Num. Anal. 10, 1.

Itoh & Abe1988
Itoh, T. & Abe, K. [1988] ``Hamiltonian-conserving discrete canonical equations based on variational difference quotients,'' J. Comput. Phys. 76, 85.

Jackson, E. A. [1989] Perspectives of Nonlinear Dynamics, vol. 1 (Cambridge University Press).

Kloeden & Lorenz1986
Kloeden, P. E. & Lorenz, J. [1986] ``Stable attracting sets in dynamical systems and their one-step discretizations,'' SIAM J. Num. Anal. 23, 986.

Lambert, J. D. [1973] Computational Methods in Ordinary Differential Equations (Wiley).

Lambert, J. D. [1991] Numerical Methods for Ordinary Differential Systems (Wiley).

Lasagni, F. M. [1988] ``Canonical Runge--Kutta methods,'' ZAMP 39, 952.

MacKay, R. S. [1990] ``Some aspects of the dynamics and numerics of Hamiltonian systems,'' in Dynamics of Numerics and Numerics of Dynamics IMA.

Maclachlan & Atela1992
Maclachlan, R. I. & Atela, P. [1992] ``The accuracy of symplectic integrators,'' Nonlinearity 5, 541.

Marsden et al. 1991
Marsden, J. E., O'Reilly, O. M., Wicklin, F. W. & Zombro, B. W. [1991] ``Symmetry, stability, geometric phases and mechanical integrators,'' Preprint.

Menyuk, C. R. [1984] ``Some properties of the discrete Hamiltonian method,'' Physica D 11, 109.

Miller, R. H. [1991] ``A horror story about integration methods,'' J. Comput. Phys. 93, 469.

Parker & Chua1989
Parker, T. S. & Chua, L. O. [1989] Practical Numerical Algorithms for Chaotic Systems (Springer).

Peitgen & Richter1986
Peitgen, H.-O. & Richter, P. H. [1986] The Beauty of Fractals, chapter 8 `A Discrete Volterra--Lotka System', ,p. 125 (Springer).

Press et al. 1988
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. A. [1988] Numerical Recipes in C (Cambridge University Press).

Prüfer, M. [1985] ``Turbulence in multistep methods for initial value problems,'' SIAM J. Appl. Math. 45, 32.

Santillan Iturres et al. 1992
Santillan Iturres, A., Domenech, G., El Hasi, C., Vucetich, H. & Piro, O. [1992] Preprint.

Sanz-Serna, J. M. [1988] ``Runge--Kutta schemes for Hamiltonian systems,'' BIT 28, 877.

Sanz-Serna & Abia1991
Sanz-Serna, J. M. & Abia, L. [1991] ``Order conditions for canonical Runge--Kutta schemes,'' SIAM J. Num. Anal. 28, 1081.

Sanz-Serna & Vadillo1987
Sanz-Serna, J. M. & Vadillo, F. [1987] ``Studies in numerical nonlinear instability iii: Augmented Hamiltonian systems,'' SIAM J. Appl. Math. 47, 92.

Sauer & Yorke1991
Sauer, T. & Yorke, J. A. [1991] ``Rigorous verification of trajectories for the computer simulation of dynamical systems,'' Nonlinearity 4, 961.

Stetter, H. J. [1973] Analysis of Discretization Methods for Ordinary Differential Equations (Springer).

Stewart, I. [1992] ``Numerical methods: Warning---handle with care!,'' Nature 355, 16.

Thompson & Stewart1986
Thompson, J. M. T. & Stewart, H. B. [1986] Nonlinear Dynamics and Chaos (Wiley).

Tomita, K. [1986] ``Periodically forced nonlinear oscillators,'' in Holden, A. V., editor, Chaos (Manchester University Press).

Ushiki, S. [1982] ``Central difference scheme and chaos,'' Physica D 4, 407.

Yamaguti & Ushiki1981
Yamaguti, M. & Ushiki, S. [1981] ``Chaos in numerical analysis of ordinary differential equations,'' Physica D 3, 618.

Yee et al. 1991
Yee, H. C., Sweby, P. K. & Griffiths, D. F. [1991] ``Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. i. The dynamics of time discretization and its implications for algorithmic development in computational fluid dynamics,'' J. Comput. Phys. 47, 249.

Yoshida, H. [1990] ``Construction of higher order symplectic integrators,'' Phys. Lett. A 150, 262.

Zhong & Marsden1988
Zhong, G. & Marsden, J. [1988] ``Lie--Poisson Hamilton--Jacobi theory and Lie--Poisson integrators,'' Phys. Lett. A 133, 134.

Julyan Cartwright
Wed Sep 27 17:21:22 MET 1995